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Abstract

Compressed air jets are commonly used for localised
cooling of aluminium reduction cell sidewalls when
process excursions occur or when sidewall tap outs
are imminent. Typically compressed air is applied to
cell sidewalls with large variation in the location and
direction of air jets. Air flow consumption is generally
high as full plant air pressure is used. Compressed
air is expensive and has finite capacity hence its use
for cooling should be efficient whilst being effective
in prolonging cell lives. A range of experiments were
conducted to explore the effects of supply air pres-
sure, Reynolds number, jet to sidewall spacing and
jet angle on sidewall heat transfer. The experiments
were conducted at the Light Metals Research Centre
- University of Auckland using a nominal half scale
test rig representing cell sidewalls. This paper shows
the importance of air pressure, Reynolds number, jet
to sidewall distance, and jet angle on sidewall cooling.

Introduction

Compressed air jets are used within the aluminium
smelting industry to locally cool hot regions of cell
sidewalls. Compressed air jets, formed by supply
compressed air to nozzles, are used as a preventative
response to restore the protective sidewall ledge and
prevent cell failure.

Sidewall cooling is becoming more important as
cell energy intensification increases. To increase the
capital return of existing assets, including the latest
generation of high current cells, aluminium smelters
throughout the world have increased line amperage
over the last 15 years. Line amperage increases re-
quire cell heat balance modification to maintain sta-
ble cell operation and the protective sidewall ledge.
Silicon carbide sidewall linings, graphatized cathodes
and metal level alterations have all assisted in achiev-
ing adequate cell heat balance however these methods
are reaching limits. The largest thermal resistance is
now the overall heat transfer coefficient at the shell
exterior. Air jet cooling, using either high pressure or

low pressure air, can enhance heat transfer at the side-
wall and is now being considered for continual use as
demonstrated by Alcan-Pechiney’s patented low pres-
sure air jet cooling system [1] for high current cells.

Supplying compressed air to jet cooling systems is
expensive especially at high pressure. Figure 1 shows
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Figure 1: Energy requirement per year to provide
compressed air to a single round nozzle at various
supply pressures

the energy requirement per year, in both kWh and
equivalent kilograms of aluminium production loss, to
provide compressed air to a single round nozzle having
either 2, 5 or 10mm outlet diameter over a range of
supply air pressures. The calculations assume contin-
uous air jet operation, 100% nozzle efficiency and air
power calculated using equations for isothermal air
compression as detailed in Kempes Engineers Year
Book [2]. An aluminium energy conversion rate of
13.5 AC kWhr/kg was used.

Effective and efficient use of air jets requires an
understanding of the effect of each nozzle arrange-
ment factor on heat transfer; factors include: nozzle
size, nozzle Reynolds number, air density at the noz-
zle exit (pressure dependant), impingement angle and
the relative distance of the nozzle from the sidewall.
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Literature

A large number of studies have been reported in the
literature for impinging jet cooling. An early re-
view paper by Martin [3] provides a comprehensive
overview of impinging jet flow and factors that effect
heat transfer. Martin defines three flow regions; free
jet, stagnation and wall jet (flow) regions. The free
jet is where the jet flow core velocity develops and
extends from the nozzle exit to the stagnation region.
The stagnation region is where the jet core velocity re-
duces from the free jet velocity to zero at the impinged
surface and turns the flow parallel to the surface. The
wall jet region is where the fluid flow is parallel to the
impinged surface. Martin’s [3] review paper includes
a Nusselt number (Nu) correlation for a rectangu-
lar single slot nozzle geometrically defined by its slot
width (B)and slot length (L). The slot length (L) is
the full width of the impinged surface and arranged
transversely to its longitudinal axis. The Nu cor-
relation, applicable for both stagnation and wall jet
regions, has factors; Reynolds number (Re), nozzle
to surface distance (s/Dh), distance from stagnation
point (x/Dh) and Prandtl number. Martin’s Nu cor-
relation generally shows reducing Nu with increasing
s/Dh however it can result in a peak Nu in the stag-
nation region with increasing s/Dh depending on the
combination of nozzle arrangement factors. Martin
[3] also concludes the mean heat transfer is indepen-
dent of impingement angle however the point of max-
imum heat transfer moves with impingement angle.

Beitelmal et al [4, 5] describe experiments of a rect-
angular single slot nozzle, arranged vertically and im-
pinging down onto a uniformly heated (fixed heat
flux) plate at various impingement angles. As in Mar-
tin [3] the slot length is the full width of the plate.
Nu correlations were established for the stagnation,
uphill and down hill wall jet regions and included
the factors; Re, x/Dh, s/Dh and impingement an-
gle. The correlations suggest reduced heat transfer
with increased s/Dh distance (in contrast with Mar-
tin [3]), nozzle angle and increased heat transfer with
Re.

Jambunathan et al’s [6] review paper of single
round nozzles reaffirms the primary factors of Mar-
tin’s [3] Nu correlation and concludes that considera-
tion of the following factors is also required; nozzle ge-
ometry, confinement and upstream turbulence of the
flow to the nozzle. They also conclude that square
edge nozzles give higher heat transfer than ASME el-
liptical nozzles at s/Dh < 10.

Goldstein et al [7] conducted round nozzle ex-
periments using impinging compressed air jets and
showed that local Nu in the wall jet region is in-
dependent of s/Dh however in the stagnation region
Nustag is dependant on s/Dh. The maximum Nustag

occurred at s/Dh = 8 and is attributed to turbulent

induced mixing of the jet stream.
Goldstein and Behbahani [8] explored the effect of

cross flow velocities on round jet nozzles using com-
pressed air and concluded that the maximum Nu re-
duces with increasing cross flow velocity at nozzle to
surface spacing s/Dh = 12 however at s/Dh = 6 mod-
erate cross flow increased the maximum Nu.

Rectangular single slot nozzles that cover the full
width of the impinged surface may have different
characteristics than a slot nozzle having a small slot
length relative to the impinged surface width. Con-
ditions typically found at the reduction cell sidewall
are also different to those used in the literature in-
cluding; vertical surface with turbulent natural con-
vection transverse to the jet, significant thermal radi-
ation from the sidewall to the nozzle, unique sidewall
thermal profile and large heat fluxes (8-12kW/m2 c.w.
3.95 kW/m2 in [5]).

Experimental

Three different nozzle designs were tested on a half
scale test rig representing the sidewalls of two alu-
minium reduction cells arranged side by side; the test
rig is three cradles long. Each sidewall is heated by
12 - 750 Watt elements, oriented horizontally, stacked
vertically and switched on and off by PLC controlled
solid state relays to produce a sidewall temperature
profile similar to that observed on actual cells; con-
stant power input mode was used for the experiments.
Test rig sidewall temperatures were measured using
K type thermocouples embedded in the wall. Heat
flux was measured using a HT50 heat flux sensor lo-
cated at the jet impingement point. The locations of
thermocouples, heat flux sensor and nozzle angles are
shown in Figure 2.
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Figure 2: Nozzle angle (α) and location of thermo-
couples and heat flux sensor (XE2) on sidewall (SW)

Each experimental run consisted of applying a noz-
zle of a given size to the sidewall at a given angle and
distance from sidewall; the nozzle impingement point
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was 250mm from the top of the sidewall, directly in-
line with the heat flux sensor (XE2). The 12.5mm
nozzle was supplied with compressed air whilst the
20 and 40mm nozzles were supplied with low pressure
air from a centrifugal blower. Nominal compressed air
pressures of 0.8, 3.0 and 4.8 bar (gauge) were used for
the 12.5mm nozzle, fan pressures (gauge) of 275, 515
and 1050 Pa for the 20mm nozzle and 65, 130 and 250
Pa for the 40mm nozzle were used.

The test rig was heated to steady state with no
flow to the nozzle; temperatures and heat flux data
were recorded. Air flow was applied to the nozzle
to achieve a specified Reynolds number based on noz-
zle stagnation pressure and temperature. The test rig
was allowed to reach steady state after which temper-
atures, heat flux and nozzle pressures were recorded.
The process was repeated to achieve three different
Reynolds numbers each day.

Three mean measures were calculated from the col-
lected data. Tavg grid represents the mean sidewall
temperature and is the mean of temperature locations
TE17, 27, 12, 22, 6, 23, 26, 37 and 13. Tavg grid covers
the central half width between cradles. Tavg profile is
the mean of temperatures located on the vertical cen-
treline between shell cradles at locations TE21, 11,
22, 6, 23, 24. Ustag isen is the overall heat transfer
coefficient in the stagnation region and includes ther-
mal radiation. Ustag isen was calculated from the heat
flux data (XE2), local sidewall temperature (TE6, 30)
and the nozzle throat temperature (Tthroat) using the
following equations:

Ustag isen =
q

(Tw − Tthroat)
(1)

Tw =

(

TE6 + TE30

2

)

(2)

Tthroat = To

(

Pthroat

Po

)

1.4−1

1.4

(3)

Pthroat−unchoked = Pambient (4)

Pthroat−choked = 0.52828Po (5)

Isentropic Reynolds number (Reisen) was calculated
from the measured nozzle stagnation pressure and
temperature immediately upstream from the nozzle
exit as follows:

Reisen =
uDh

ν
(6)

uun chocked =

{

2γRT

γ − 1

[

1 −

(

Pt

Po

)

γ−1

γ

]}

1

2

(7)

uchocked =

{

2γRT

γ + 1

}
1

2

(8)

The equations above (equations 1 - 8)are from Zu-
crow and Hoffman [9] and assume ideal gas laws and
isentropic flow. The critical pressure ratio determined
whether choked or non choked flow equation for ve-
locity was used.

Friction will cause non-isentropic flow within the
nozzle resulting in a reduction of exit velocity hence
the calculated Reynolds number assuming isentropic
flow (Reisen) will be higher than the true Reynolds
number. Measuring the actual flow conditions at the
nozzle exit is difficult, especially at the high tempera-
tures found at the sidewall. Reisen provides a robust
method of determining nozzle flow conditions that can
be replicated within the potroom environment allow-
ing comparison of this experimental work with plant
trials.

Two experimental sets were conducted in this work:

1. A factorial experiment, at low pressure, of the
nozzle arrangement factors as follows:

Nozzle Size 12.5mm 20mm 40mm

Angle 45◦ 90◦ 135◦

Re 4500 6500 9500

s/Dh 3 6

2. A set of nozzle to wall distance (s/Dh) experi-
ments with each nozzle at 90◦

Nozzle design Nozzles were constructed by squash-
ing the end of tubes to create a slot of specified width
(dimension B) as shown in Figure 3. A tube enclos-
ing a thermocouple is also shown which was used to
measure stagnation pressure and temperature to cal-
culate isentropic flow conditions at the nozzle throat.

P, T Measuring
point

ID

A

L

B

E
F

G

H

Nozzle size A 12.5 20 40
Tube ID ID 10 18 38
Slot width B 0.3 4 4
Slot length L 15.5 29.5 57
Dh Dh 0.6 3.9 7.6
Radius start E 30 45 70
Sample point F 50 65 85
Slot land G 4 4 8
Overall length H 190 150 150
*dimensions in mm

Figure 3: Nozzle design parameters

Results and Discussion

An ANOVA analysis of the factorial experiment
showed the factors; isentropic Reynolds number
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(Reisen), nozzle angle (α), nozzle size and distance
from the sidewall (s/Dh) as having a statistically sig-
nificant effect (at the 5% level) on the mean grid
sidewall temperature (Tavg grid); each nozzle arrange-
ment factor is discussed in further detail below.

Isentropic Reynolds Number

The effect of isentropic Reynolds number (Reisen) on
Tavg grid for the three nozzle sizes at two s/Dh dis-
tances is shown in Figure 4. Increasing Reisen reduced
Tavg grid for all nozzle sizes with the rate of temper-
ature reduction greatest at low Reisen values. The
20mm and 40mm nozzle sizes show similar behaviour
in the low Reisen range when s/Dh = 10 or 20. The
high pressure nozzle (12.5mm) had a more significant
temperature reduction with increasing s/Dh and a re-
duced rate of temperature reduction with increasing
Reisen. The observed effect is consistent with the lit-
erature [3-8]
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Figure 4: Effect of Reisen on Tavg grid for 12.5mm and
20mm nozzles with s/Dh =10 and 20, 40mm nozzle
s/Dh=10, α = 90◦

Nozzle impingement angle

The effect of nozzle impingement angle (α) on the ver-
tical thermal profile of the sidewall is shown in Figure
5 for the 12.5mm size nozzle at Reisen = 15,000. Sim-
ilar trends were observed for the 20 and 40mm nozzle
sizes also. Nozzle angle affected the top, bottom and
peak sidewall temperatures. A 90◦ nozzle angle pro-
duced the lowest peak temperature and significantly
cooled the top and bottom sidewall regions. A nozzle
angle of 45◦ resulted in significant bottom sidewall
cooling with only moderate cooling at the top. This
arrangement is useful if the sidewall to anode crust is
hard and lower sidewall cooling is required. A nozzle
angle of 135◦ resulted in minimal temperature reduc-
tion with the majority of cooling occurring at the top
of the sidewall.

The effect of nozzle angle on Tavg grid was explored.
For all nozzles, the lowest Tavg grid was at a noz-
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Figure 5: Effect of nozzle angle (α) on vertical centre-
line sidewall temperature profile for 12.5mm nozzle,
s/Dh = 20, Reisen = 15,000

zle angle of 90◦ with the next lowest temperature at
45◦. Larger nozzle to sidewall distance (s/Dh) had a
greater nozzle angle effect especially for the 12.5mm
size nozzle. A 90◦ nozzle angle provides the most ef-
fective overall sidewall cooling.

Nozzle distance from sidewall

The effect of dimensionless sidewall distance (s/Dh)
on the vertical sidewall temperature profile for the
20mm size nozzle at 90◦ is shown in Figure 6. In-
creasing s/Dh ,up to approximately s/Dh = 15, re-
sulted in reduced sidewall temperatures and a flatter
thermal profile, especially at the impingement point.
At s/Dh=25, sidewall temperatures were generally
higher than that at s/Dh=15.
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Figure 6: Effect of nozzle to sidewall distance (s/Dh)
on the vertical centreline thermal profile of sidewall
for 20mm size nozzle, Reisen = 6500, α = 90◦

The effect of nozzle distance (s/Dh) on Tavg grid is
shown in Figure 7. The 12.5 and 20mm nozzle sizes
showed reduced mean sidewall temperatures with in-
creasing s/Dh distance in the range tested. The
40mm nozzle size showed maximum temperature re-
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duction when s/Dh ≈ 6 after which sidewall temper-
atures increased.
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The effect of s/Dh on the stagnation overall heat
transfer coefficient (Ustag isen), which includes ther-
mal radiation, for the 12.5, 20 and 40mm nozzles is
shown in Figure 8. Ustag isen reduces with s/Dh dis-
tance for the 12.5 and 40mm nozzles however the
20mm nozzle has a local peak at s/Dh ≈ 6; the
12.5mm nozzle does not have results s/Dh < 10 hence
a local peak less than this cannot be identified. The
20mm nozzle arrangement agrees with Martin’s [3]
Nustag which has a local peak at s/Dh ≈ 6-8 and
with Goldstein et al’s [7] peak Nustag occurring at
s/Dh = 8 for a round nozzle. Beitelmal et al’s [4, 5]
Nustag decreases with s/Dh and has no local peak
which agrees with the 40mm nozzle results.
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At locations furthest from the centre line (TE17,
27, 12, 26, 37, 13), the wider 40mm nozzle at fixed
s/Dh and Reisen, had the lowest temperatures which
in turn resulted in low Tavg grid values, it also had the

lowest Ustag isen hence the heat transfer coefficient
in the stagnation region does not necessarily reflect
Tavg grid however a relationship with nozzle width
(slot length) exists.

Ambient air entrapment of a small slot nozzle im-
pinging on a large surface will resemble that of a single
round nozzle (in contrast to that of a full width slot
nozzle found in [3, 5, 4]). Goldstein et al’s [7] round
nozzle work identified a local maximum Nustag and
related it to turbulent mixing of air from the shear
layer; subsequent reduction in stagnation Nustag with
increasing s/Dh was assigned to reduced jet arrival ve-
locity. At fixed Reisen, the 40mm nozzle exit velocity
is half that of the 20mm nozzle which could have re-
duced turbulent mixing at the stagnation point thus
preventing the local maximum Ustag isen when com-
pared with the 20mm nozzle. This may also explain
the difference in Beitelmal et al’s [4, 5] correlation,
based on low nozzle throat velocity, compared to Mar-
tin’s [3] more general, higher velocity, correlation.

Air Power

Tavg grid verses air power is shown in Figure 9 for a
nozzle angle of 90◦. The no air flow case provides a
comparison of the cooling achieved. The air power
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scale is logarithmic showing the significantly higher
energy requirement of the high pressure nozzle. At
a sidewall temperature of approximately 215◦C the
20mm and 40mm size nozzles have an air power re-
quirement of 1 to 2.5 W compared to approximately
90 W for the high pressure, 12.5mm size nozzle at
s/Dh = 10. At s/Dh = 20 the high pressure noz-
zle has a lower sidewall temperature than the 20mm
nozzle. The 40mm nozzle also has a lower air power
requirement for similar cooling potential as the 20mm
size nozzle at s/Dh =10 indicating a larger, low pres-
sure, nozzle is more effective. Figure 9 indicates that
small, high pressure, nozzles are not energy efficient
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for moderate sidewall cooling of wide sidewall areas
at low nozzle to wall distances (s/Dh) however they
do have high cooling capability at larger s/Dh values.

Conclusions

Isentropic Reynolds number (Reisen), nozzle angle
(α), nozzle size and dimensionless distance from side-
wall (s/Dh) effect the sidewall cooling capability of
compressed air nozzles at high and low pressures.

Increasing Reisen reduces sidewall temperatures for
all nozzle sizes tested. The greatest rate of tempera-
ture reduction occurred at low Reisen with large, low
pressure nozzles.

90◦ nozzle angles have the largest mean sidewall
temperature reduction. 45◦ nozzle angles cool the
lower sidewall regions whilst providing moderate cool-
ing at the sidewall top. 135◦ nozzle angles signifi-
cantly cool the top sidewall with moderate cooling at
the peak temperature location and lower sidewall.

Nozzle to sidewall distance (s/Dh) has a significant
effect on sidewall cooling with the optimum s/Dh de-
pending on the combination of nozzle arrangement
factors including nozzle size and nozzle exit veloc-
ity. The largest mean sidewall temperature reduction
occurred in the range of s/Dh = 6-15. The stagna-
tion overall heat transfer coefficient Ustag isen reduces
with increasing s/Dh for the 12.5 and 40mm nozzles.
Ustag isen is localised and is not a direct indicator of
mean overall sidewall cooling.

Small, high pressure nozzles, require significantly
more energy than larger, low pressure nozzles, for
equivalent mean sidewall cooling levels in the ranges
tested. The most effective nozzle arrangement for
moderate cooling of a wide portion of the sidewall
was a low pressure, 40mm nozzle, at an angle of 90◦

and s/Dh = 6-10.

Nomenclature

B = slot width (mm)
L = slot length (mm)
Dh = nozzle hydraulic diameter
s = distance from wall to end of nozzle (mm)
x = distance along the wall from the stagnation point
(mm)
α = inclination angle (degrees)
q = heat flux measurement (XE2) (W/m2)
Ustag isen = stagnation overall heat transfer coefficient
(W/m2K)
Nu = Nusselt number
Reisen = Reynolds number = uDh

ν

u = nozzle velocity (m/s)
ν = kinematic viscosity
γ = index for air Cp

Cv

P = stagnation pressure (absolute) (Pa)
T = stagnation temperature (absolute) (K)
R = specific gas constant = 287.04 (J/kgK)

subscripts

o = stagnation upstream of nozzle exit

throat = throat conditions

choked = nozzle choked

unchoked = nozzle un choked

isen = isentropic flow assumed

stag = stagnation region

w = wall

ambient = ambient air conditions
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