FLUORIDE EMISSIONS MANAGEMENT GUIDE
(FEMG)

Written by
LIGHT METALS RESEARCH CENTRE (LMRC)
Auckland UniServices Limited
The University of Auckland

Under invitation of
Australian Aluminium Council (AAC)
Asia-Pacific Partnership (APP) on Clean Development and Climate

Release date
1st February 2011

Version
Full (Version 4)

This content of this FEMG document is the work of LMRC and the document has been compiled by LMRC for AAC. AAC is entitled to use and reproduce the document and any part of it. Any intellectual property rights in data and scientific information included in the document remain the property of Auckland UniServices Limited and Auckland UniServices Limited retains copyright in all illustrations and compilations included in the document. LMRC may use this data, information and copyright works for other purposes.
Table of Contents

1.0 Introduction & Theory ... 1
 1.1 Purpose of the Guide ... 1
 Why has this guide been written? ... 1
 1.2 Scope of the Guide .. 2
 1.3 Structure of the Guide ... 3
 What kind of information does the guide provide? ... 3
 1.4 Drivers Behind Fluoride Emission Control ... 4
 Why is controlling & reducing fluoride emissions important? ... 4
 What are the legal limits for fluoride emissions? ... 5
 How do fluorides affect people & our environment? ... 7
 How do fluorides affect the smelter’s performance? ... 8
 1.5 Definition of Fluorides ... 9
 What are fluoride emissions and are there different types? .. 9
 1.6 Mechanisms of Fluoride Generation / Evolution .. 10
 How do fluorides form in the aluminium smelting process? .. 10
 1.7 Fluoride Escape Pathways ... 11
 How do fluorides escape the smelter? .. 11

2.0 Overall Fluoride Emission Management System ... 14
 2.1 Introduction .. 14
 What is the overall concept of fluoride emission management system? .. 14
 2.2 Control of Work Practices ... 15
 Why it is important to control smelter work practices within their process specifications? 15
 2.3 Monitoring Systems ... 17
 What are monitoring systems and why are they important? .. 17
 What are the monitoring systems for fluoride emission? .. 17
 What are the monitoring systems for plant processes? .. 18
 2.4 Response Systems .. 18
 What are response systems and why are they important? .. 18
 2.5 Smelter Audit Systems .. 19
 What are the smelter audit systems and why are they important? ... 19
 2.6 Implementation of the FEMG .. 20
 How should the FEMG be implemented in a smelter? ... 20

3.0 Potroom Systems for Reducing Fluoride .. 22
 3.1 Introduction .. 22
 3.2 Anode Setting and Dressing ... 25
 What is anode setting? ... 25
 Why is anode setting important? ... 25
 What is anode dressing? ... 25
 How does anode setting impact on fluoride emission? ... 27
 How does anode dressing impact on fluoride emission? ... 29
 How to reduce fluoride emission in anode setting and dressing practice? ... 30
 What are the potential improvements? ... 33
 3.3 Metal Tapping .. 34
 What is metal tapping? ... 34
 Why is metal tapping important? ... 34
 How does metal tapping impact on fluoride emission? ... 35
 How to reduce fluoride emission during metal tapping? ... 36
 What are the potential improvements? ... 37
 3.4 Liquid Bath Transfer ... 38
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>Gas Treatment Centre Systems for Reducing Fluoride</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Gas Flow & Pressure Drops over GTC Units</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Alumina Distribution to GTC Units</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Secondary Alumina Recycle Ratio</td>
<td>85</td>
</tr>
<tr>
<td>3.5</td>
<td>Carbon Dust Skimming</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Routine Measurements</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>Control Practice</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>Maintenance Practice</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>What are the potential improvements?</td>
<td>60</td>
</tr>
<tr>
<td>4.0</td>
<td>How to reduce fluoride emission through control of gas flows & pressure drops in the GTC?</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Why is the overall gas flow to the GTC important?</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>How does gas flow distributed to each GTC unit / compartment?</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>How is pressure drop over each GTC compartment important?</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>What is Air-to-Cloth Ratio and why is this important?</td>
<td>75</td>
</tr>
<tr>
<td>4.0</td>
<td>How can we control pressure drops in each GTC compartment?</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>How do the gas flow & pressure drop in the GTC impact fluoride emission?</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>How to reduce fluoride emission through control of gas flows & pressure drops in the GTC?</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>What are the potential improvements?</td>
<td>80</td>
</tr>
<tr>
<td>4.0</td>
<td>Why is the overall gas flow to the GTC important?</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>How is gas flow distributed to each GTC unit / compartment?</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>How is pressure drop over each GTC compartment important?</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>What is Air-to-Cloth Ratio and why is this important?</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>How can we control pressure drops in each GTC compartment?</td>
<td>85</td>
</tr>
<tr>
<td>4.0</td>
<td>How do the gas flow & pressure drop in the GTC impact fluoride emission?</td>
<td>86</td>
</tr>
</tbody>
</table>

FEMG: Table of Contents
How to reduce fluoride emission through control of secondary alumina recycle ratio?...........87
What are the potential improvements?...87

4.5 Inlet Duct Gas Temperature & Fluoride Level.. 88
Why is the temperature of the inlet duct gas important?...88
Why is the fluoride level of the inlet duct gas important?...88
How does inlet duct gas temperature impact on fluoride emission?.........................89
How does inlet duct gas fluoride level impact on fluoride emission?.........................90
How to reduce fluoride emission through control of inlet duct gas temperature & fluoride level?...91
What are the potential improvements?...93

4.6 Bag-House Pulsing / Cleaning... 94
What is the baghouse and why is it important?..94
What is baghouse pulsing / cleaning?...95
How does baghouse pulsing / cleaning impact on fluoride emission?.....................96
How to reduce fluoride emission through control of baghouse pulsing / cleaning?.....97
What are the potential improvements?...97

4.7 Primary Alumina Supply to GTC... 98
How does primary alumina supply impact on fluoride emission?.........................98
How to reduce fluoride emission through control of the primary alumina supply to the GTC?...99
What are the potential improvements?...99

4.8 Secondary Alumina Silo Level... 100
How does the secondary alumina silo level affect fluoride emissions?...............100
How to reduce fluoride emission through control of the alumina silo level?.........101
What are the potential improvements?...101

4.9 Maintenance Practices... 102
Why are maintenance practices important for the performance of the GTC?........102
What is hard gray scale (HGS)?..102
How does hard gray scale impact on fluoride emission?...103
How does the condition of alumina transport systems impact on fluoride emission?104
How does the condition of the main GTC gas fans & gas ducts impact on fluoride emission?...105
How does the baghouse & filter condition impact on fluoride emission?.............106
How to reduce fluoride emission through maintenance practices?......................107
What are the potential improvements?...109

5.0 Smelter Supporting Systems outside the Potroom and Gas Treatment Centre110

5.1 Introduction..110
What are the plant areas outside the Potroom and GTC?.......................................110
Why is good control of all Smelter Supporting Systems important?......................111

5.2 Anode Production Circuit...112
What is the anode production circuit?...112
Why is anode production circuit important?..113
How does the anode production circuit impact on fluoride emission?................113
How to reduce fluoride emission from the anode production circuit?..................115
What are the potential improvements?...115

5.3 Bath Processing Plant..116
What is the bath processing plant?..116
Why is bath processing plant important?..116
How does the bath processing plant impact on fluoride emission?......................117
How to reduce fluoride emission from the control of bath processing?..............118

5.4 Raw Materials..119
What are the raw materials?..119
How does the raw materials impact on fluoride emission?..............................120

6.0 Fluoride Emission Measurements..121

6.1 Introduction...121
6.2 Fluoride Emission Measurement for GTC..122
How to measure fluoride emissions from GTC?...122
Table of Contents

6.3 Fluoride Emission Measurement for Potroom .. 132
 How to measure fluoride emissions from potroom? .. 132

6.4 Fluoride Emission Measurement with Alternative Methods 138
 How to measure fluoride emissions with alternative methods? 138

6.5 Measurement Safety ... 138

6.6 Continuous Fluoride Emission Monitoring .. 139
 What are continuous fluoride measurements and what value can they offer? 139

7.0 Glossary of Terms .. 140

8.0 Appendices ... 144

Appendix I: Typical Smelter Layout ... 144

Appendix II: Smelter Audit Survey Worksheets ... 145
 POTLINE AUDIT SURVEY ... 145
 GAS TREATMENT CENTRE (GTC) AUDIT SURVEY ... 152

Appendix III: Smelter Case Study 2010, at Henan Zhongfu Industrial Co. Ltd 158
 A. Summary .. 158
 B. Background / Purpose of the FEMG Case Study .. 158
 C. External Audit Surveys & Identification of Improvements from FEMG 159
 D. Implementation & Training Workshops for FEMG Practices 160
 E. Installation of Fluoride Monitoring Equipment .. 161
 F. Feedback from Smelter on FEMG ... 162
 G. Challenges for Fluoride Management in Chinese Smelters 162
1.0 Introduction & Theory

Generation of unwanted fluoride by-products from the aluminium smelting process is unfortunately unavoidable with today’s state of technology. However, the release of fluorides into the surrounding environment can be reduced.

With careful management and control of both operations and maintenance practises around the plant, smelters are able to reduce the amount of fluorides they release into the environment, achieving levels demonstrated by the world’s best practise.

1.1 Purpose of the Guide

Why has this guide been written?

The Fluoride Emission Management Guide (FEMG) has been written for all smelters in China, and for managers, engineers and operators alike, to:

1) Increase understanding of the factors that control fluoride evolution and emissions, and
2) Detail what operating, control and maintenance practises are required in order for smelters to control and reduce their fluoride emissions.

The guide focuses mainly on improvements to work and maintenance practises, as these are typically low cost and allow a smelter to maximise its environmental performance with its existing technology. Less emphasis is placed on technology improvements, which require higher capital investment.

Recommendations have been proven by world-class smelters and are based upon world’s current best practises – if adopted; smelters stand to achieve significant improvement in their environmental performance.

The ultimate aim of the guide is to provide practical and technical information to help all smelters in China achieve significant reductions in fluoride emissions, reducing the overall environmental impact of the smelting industry in China.

The guide has been prepared by the Light Metals Research Centre (LMRC), the University of Auckland, on the invitation of the Australian Aluminium Council (AAC), under the Asia-Pacific Partnership (APP) on Clean Development and Climate.
1.2 Scope of the Guide

What emissions & types of smelters are covered by the guide?

The FEMG covers fluoride emissions from primary aluminium smelters, concentrating on the potroom and gas treatment centre, as well as audits required and overall smelter systems that contribute to emissions.

The guide focuses on pre-bake, point-fed pot technologies and injection-type dry scrubbing technologies, which cover over 90% of all Chinese aluminium smelters. The full scope of the FEMG is illustrated in Table 1.1.

Table 1.1 - Scope of the FEMG.

<table>
<thead>
<tr>
<th>Elements in the FEMG</th>
<th>What IS COVERED In the FEMG?</th>
<th>What’s NOT covered in the FEMG?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Emission Type</td>
<td>Fluoride emissions only, including:</td>
<td>Non-fluoride emissions, including:</td>
</tr>
<tr>
<td></td>
<td>• Gaseous fluorides, HF</td>
<td>• SO₂, CO, CO₂</td>
</tr>
<tr>
<td></td>
<td>• Particulate fluorides</td>
<td>• Polycyclic Aromatic Hydrocarbons (PAH’s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Perfluorocarbons (PFC’s), CF₄, C₂F₆</td>
</tr>
<tr>
<td>Potroom / Pot Design</td>
<td>• Pre-bake pot design</td>
<td>• Söderberg pot design</td>
</tr>
<tr>
<td></td>
<td>• Point-fed</td>
<td>• Bar-break / side-work designs</td>
</tr>
<tr>
<td>Gas Treatment Centre / Scrubber</td>
<td>• Dry scrubbers, with an injection-type reactor and bag-house</td>
<td>• Wet scrubbers</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td>• Dry scrubbers, with alternate technology like Torroidal or fluidised bed</td>
</tr>
</tbody>
</table>
1.3 Structure of the Guide

What kind of information does the guide provide?

The FEMG covers 6 main sections for understanding and controlling fluoride emissions:

1. **Introduction & Theory** – Drivers behind reducing fluoride emissions, and background into how fluoride emissions are generated.

2. **Overall Fluoride Emission Management System** – Overall concept and approach for controlling and managing smelter fluoride emissions.

3. **Potroom Systems for Reducing Fluoride** – Key Process Indicators (KPI) and control points for operations/control & maintenance practises in the potroom.

4. **Gas Treatment Centre for Reducing Fluoride** – Key Process Indicators (KPI) and control points for operations/control & maintenance practises for the gas treatment centre.

5. **Smelter Systems Outside the Potroom and Gas Treatment Centre** – Key Process Indicators (KPI) and control points for other areas in the smelter that affect fluoride emissions.

6. **Fluoride Emission Measurements** – Standard and recommended smelter fluoride measurement methods.

Where possible in the guide, improvements to practises will be focused on over technology improvements, with recommendations ranked from requiring little/no capital investment to significant capital investment.

[Diagram of FEMG structure with arrows and sections labeled: INTRODUCTION & THEORY (Chapter 1), OVERALL MANAGEMENT SYSTEM (Chapter 2), POTROOM SYSTEMS (Chapter 3), GAS TREATMENT CENTRE SYSTEMS (Chapter 4), SMELTER SYSTEMS (Chapter 5), FLUORIDE EMISSION MEASUREMENTS (Chapter 6).]

Figure 1.1 – Structure of the FEMG.
1.4 Drivers Behind Fluoride Emission Control

Why is controlling & reducing fluoride emissions important?

All aluminium smelters in the world, including those in China, are driven by the same factors for reducing the amount of fluorides they release into the environment. These factors are legal, health and environment, as well as operations or performance as illustrated by the chart below.

It is important to note that by implementing the best practices in this FEMG, each smelter has the potential to not only make significant improvements in environmental performance, but also significant improvements in the smelter’s key operating performance measures, e.g. reductions in specific energy consumption, higher current efficiency, reductions in material losses, and so on.

Drivers for the Smelter: Reducing Fluoride Emissions

- **Legal Limits for Fluoride**
 - Set by Chinese Government & other legal bodies
 - Need to meet limits to stay operational
 - Limits continue to be reduced over time

- **People’s Health & Environment**
 - Smelter responsible for reducing impact to:
 - Health of employees & surrounding communities
 - Surrounding atmosphere & environment

- **Smelter Performance**
 - Reduce specific energy consumption
 - Better control of process better current efficiency
 - Reduce usage & cost of materials
 - Protect capability to increase line amperage

Figure 1.2 – Chart showing why smelters need to make practical steps to reduce its fluoride emissions.