Smelter Audits

A New Perspective on Your Performance

In the competitive market of primary aluminium production, smelters are facing reduced profitability due to low aluminium price and high power prices. In this kind of environment smelter management needs to ask

- Are we making the most of what we have?
- Are all our assets being utilised to their full potential?
- Are our people focusing on what is important for the process?
- How do we make things better?

LMRC engineers work with smelters around the world, exposing them to the latest technology and best operational practices available. In addition, LMRC research has directly contributed to the development of new technologies that have been implemented globally in alumina refineries, potrooms, carbon plants and rodding rooms. This extensive experience gives LMRC the capability to examine a smelter's current performance and practices and recommend improvement pathways that meet the smelter's specific needs.

An audit conducted by LMRC is comprehensive and includes an assessment of:

- Overall smelter performance and KPI's
- Operational practices
- Use of data
- Decision making processes
- Thermal balance management
- Utilisation of equipment
- Management processes and efficiency
- Safety
- General physical condition of the plant

Pot performance is analysed using advanced statistical tools on current and historical data in conjunction with detailed observation of operational practices.

LMRC offers independent audits for potrooms, carbon plant, rodding room and the bath circuit.

Potroom Audit

The potroom audit provides detailed assessment of the current management structures, potroom and pot physical condition, control system and operations. Assessment includes the following items:

Table 1: Potroom audit list

Potroom	Potroom management structure.
management:	Man power requirements
	• KPI for potroom staff
	Potroom operation
	 Potroom maintenance and logistics
	Data management
Potroom and pot physical	 General building condition and housekeeping
condition and design:	Pot superstructure
-	Bus work
	Anode clamps/rods/stubs
	Anode cover
	• Dust/air burn
	Crust breaker/feeder condition
	 Tapping/Feeding hole
	 Pot heat balance assessment
Control Systems	ACD control
	Alumina feeding
	• Bath chemistry and temperature
	Noise control
	 Data collection and analysis processes
	 Abnormality detection and re- sponse processes
	• Emission monitoring and control

Operational procedures:	Anode change
	 Cover application and redressing
	Metal tapping
	Beam raising
	 Routine measurements – eg. bath & metal heights, metal and bath sampling and analysis
	Liquid level management
	 Equipment management – eg. crane usage

LMRC engineers with smelter staff observe operational procedures and interview operators and managers in order to obtain the information required for correct assessment of the current potroom operation.

Carbon Plant and Rodding Room:

The performance of the smelter is also influenced by the quality of the anode assemblies, hence auditing the entire chain of anode production from raw materials to rodding room will lead to further improvement in terms of energy consumption, carbon consumption and reduction in rework (such as unscheduled anode change). Table 2 shows the different stages in the anode production process and the items that are audited by the LMRC team.

The outcome of the audit will include recommendations and ways to improve the performance of the process and better utilisation of data, equipment and people. These recommendations can be implemented by the smelter engineers/operators or LMRC engineers can provide further support to the smelter. Table 2: Carbon and anode production audit list

Pitch melting facility	 Pitch melting controls and operation Paste plant controls and operation Incoming calcined coke/melted pitch/butt fraction/fines Dry Aggregate/mixer/paste
Paste Plant Vibroformer	 Paste temperatures - Pitch, mixer, cooler, anode Observe vibroformer operation Green anode observations - height (density)/appearance/temperature
Storage/ Calciner	 Green Coke and solid pitch storage area Smelter strategy for unloading and segregation/blending Calciner technology/operation Sample points/frequency Any analysis done onsite?
Sampling & Measurements	 Sampling points Take measurements (process temperatures etc.)
Baking Furnace	 Baking furnace maintenance operations Observe furnace operations such as loading and unloading, pit dressing, etc. Equipment conditions and placement
Rodding Room	 Anode butt survey (eg. condition, cracks, airburn) Rod/stub condition Rodded anode condition/quality Cast iron condition
Bath processing plant	 Anode butt cleaning Storage Crushing Blending Transport/delivery to potroom Quality control of crushed bath

UNISERVICES

Bath Circuit

The anode cover material composition and height control the heat dissipation from the top of the pots. Adjustment of the anode cover is one of the critical factors to control the pot heat balance, hence having a bath processing plant that can deliver anode cover material according to needed specification is important to the plant performance.

Maintaining bath height also depends on the operation of the bath processing plant.

In the smelter audit, LMRC engineers also examine the operation of the bath processing plant according to the list shown in Table 3 $\,$

Table 3: Bath processing circuit audit list.

Storage	Storage methodCondition and cleanliness
Crushing	 Crushing equipment Maintenance Operation Crushed bath particle size distribution Magnetic separation and crushed bath purity
Blending	 Blending method Equipment Operation and maintenance Blended material quality Blended materials size distribution
Transport	Transport method

Gas Treatment Centre (GTC)

Gas treatment centre's operation and performance is critical to fluoride emission control at the smelter. Gas collection, transport, scrubbing reactors processes and secondary alumina transport back to the pots all have influence on the smelter's emission control and cell mass balance and performance.

The GTC audits looks all aspects of scrubbing operations and performance, determines the shortcomings and impacts to the process and highlights improvement paths to eliminate and mitigate these impacts. Table 4: GTC audit list.

Reactors	• Design		
	Operation		
	Maintenance		
	 Blockages or leaks 		
Bags House	Maintenance scheduleBags condition		
Conveying System	 Type of conveying system 		
	 Maintenance and operation 		
	 Inventory management and segra- getion 		
Air Ducting	Condition and maintenance		
	Visible leaks		

Audit outcome and savings

In the audit we identify the areas that can be improved and usually continues improvement work is generated following the audit recommendation.

The table below shows the benefits in few parameters that were achieved in two smelters after improvements projects that were done based on the audit analysis.

Parameter	Smelter A	Smelter B
Current Efficiency (%)	2.27	2.1
Energy Consumption (DC)	-0.2	-0.52
Gross Carbon Consumption	-46	-39
Net Carbon Consumption	-27	-26

Contact:

Pretesh Patel, Manager Light Metals Research Centre +64 9 923 2137 p.patel@auckland.ac.nz Mark Dorreen, Director

Light Metals Research Centre +64 9 923 8302 m.dorreen@auckland.ac.nz

LIGHT METALS RESEARCH CENTRE THE UNIVERSITY OF AUCKLAND UNISERVICES

